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Abstract — A magnetohydrodynamic model for the interaction of the solar
wind and the geomagnetic field is described, the degree to which the
governing equations may be approximated by the simpler equations of the

classical Chapman-Ferraro theory combined with gasdynamics is examined,

and numerical results for a number of representative cases are presented. .

In the hydromagnetic model, the magnetosphere boundary and distant tail
are represented by tangential and contact discontinuities, and the bow
wave by a fast hydromagnetic shock wave. The connectivity of interplan-
etary and geomagnetic fields, and the asymptotic directions of the wake
and shock waves at great distances from the earth are discussed in terms
of properties of these discontinuities. Detailed numerical results for
the location of the bow wave, and the density, velocity, and temperature
of the flow in the region between the bow wave and the magnetosphere are
presented for Mach numbers 5, 8, and 12 for y = 5/3 and 2. The calcu-
lated position of the bow wave is shown to be in good accordance with
that observed in shadowgraph photographs of supersonic flow past a model
magnetosphere in the Ames Supersonic Free-Flight Wind Tunnel. Results
are also presented that illustrate the distortion of the interplanetary
magnetic field in the region between the bow and the magnetosphere for

cases in which the magnetic field in the incident stream is i&;ﬁgd at

45° and 90°'to the free-stream direction. 0
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1. INTRODUCTION

Data obtained in space, particularly that from IMP-I (Explorer XVIII),
have established beyond all doubt the existence of at least two classes
of near discontinuities in plasma and magnetic field properties in the

()

space surrounding the eaxrth One of these, the magnetopause, sepa-
rates a region of rapidly flowing plasma with irregular magnetic fields
from the magnetosphere where the magnetic field is considerably stronger
and steadier and no plasma is detected by the plasma probes. Although it
is presumed that plasma actually exists in the magnetosphere, the magne-
topause marks the boundary of a region from which the rapidly streaming
solar wind is excluded. Its shape conforms to that indicated by calcu-
lations based on the classical Chapman-Ferraro theory of the interaction
of a dipole geomagnetic field and a fully ionized collisionless unmagne-
tized gas flowing radially outward from the sun. The second discontinuity
is observed a few earth radii upstream of the magnetopause in a position
that conforms remarkably well with the position of a bow shock wave in a
supersonic flow past an obstacle having the shape of the magnetopause.

(2)

Ness has also reported recently that data from the same satellite dis-
close the existence of a third discontinuity surface extending downstream
from the earth inside the magnetosphere tail. In addition fluctuating
magnetic fields were detected when the satellite was directly downstream
from the moon, particularly on one occasion when IMP-I was near apogee

at a geocentric distance of about 30 earth radii and approximately midway
(3,4).

between the earth and moon This has been interpreted as the result

of the satellite traversing the wake of the moon. These discoveries are




of utmost importance to any discussion or analysis of the interaction
between the solar wind and the geomagnetic field since they establish

the general topology of the flow(s’s).

(7) (&)

These data strongly support the contention of Axford‘' ’, Kellogg
and others that the collisionless interplanetary gas behaves like a con-
tinuum fluid on scales large compared with the gyroradius of a proton in

the incident interplanetary field, i.e., about 500 km for representative
conditions. The fact that the "discontinuities" are sometimes observed

to be as thin as 100 km(g) suggests that this may be a conservative esti-
mate, and that the fluid model may be employed to discuss not only flow

past the magnetosphere, but perhaps the smaller, and effectively unmagnetized,
moon.

(<)

and others have shown that theo-

(20)

Although Ness, Scearce, and Seek
retical results such as presented by Spreiter and Jones agree well with
data from IMP-I, the logical foundations of the theory appear inconsistent.
In particular, the magnetosphere boundary is computed by a simple modifi-
cation of the Chapman-Ferraro theory, which is conventionally conceived
as a particle model of the interaction, and the shock shape is calculated
using continuum gasdynamic methods without any direct consideration of
electromagnetic forces. With the concept adopted that large scale or time
averaged features of the interaction between the solar wind and the geo-
magnetic field should be investigated in terms of a fluid theory} the
simplest mathematical model capable of adequate description of many of
the dominant features is provided by the equations of magﬁetohydrodynamics

for a nondissipative perfect compressible gas. The appropriateness of

this model for the present application involving flow of a collisionless




(11) (12)

gas has been discussed recently by Lees 5 Levy, Petschek, and Siscoe
and others, but it is not unfair to state that the principal Jjustifica-
tion derives from comparison of calculated and measured results and that

a full theoretical Justification does not exist at the present time. Per-
haps the closest approach is that provided by the analysis of Chew,

(13)

Goldberger, and Low s but they do not find the pressure to be a scalar
even when the transport of pressure along the magnetic field lines can be
suppressed or ignored. It 1s possible that the pressure may nevertheless
become a scalar as a result of instabilities or of small scale irregular-
ities prevalent in the magnetic fields observed exterior to thé magneto-
pause, but this is speculation at the present time. In spite of these
uncertainties, the difficulties of solution of the nonlinear equations of
magnetohydrodynamics and the richness of the phenomena contained within
this theory are sufficiently great that it is worthwhile to explore the
consequences of this model before introducing additional complications.
It is the purpose of this paper first to discuss the application of
the fundamental equations and concepts of magnetohydrodynamics to the
hypersonic flow of solar plasma around the earth and its magnetosphere,
second to examine the degree to which the results may be approximated
by the ﬁuch simpler equations of gasdynamics, and third to present more

extensive numerical results than have been available heretofore.
2. FUNDAMENTAL EQUATIONS N

The fundamental differential equations of magnetohydrodynamics for

the steady flow of a nondissipative (perfectly electrically conducting,

2




inviscid, nonheat conducting) perfect compressible gas are as follows (see,

(14))

e.g., Landau and Lifshitz

V.epy=0
1 1 2 1
e V + Vp = - - H 1 = = =~ 9VH + — (H « V)H
ply » Yy + ¥p = B x ol f » = (g - 91
(1)
curl(E x v) =0, divH = O

(v -ws=0, p-= &S/evo?

where p, p, 5, and v refer to the density, pressure, entropy, and velocity

of the gas, H refers to the magnetic field, 7y = cp/cv, and cp and cy
are constants representing the specific heats at constant pressure and
constant volume. Important auxiliary relations for 7, temperature T,

speed of sound a, internal energy e, and enthalpy h are as follow:

(¥ + 2)/N , P = pRT/p = nkT

=
1}

(Bp/ao)l/2 = (VP/p)l/2 = (7R’I‘/u)l/2 (2)

o
)

e =cyl , h=cgl =e +p/p

where N represents the number of degrees of freedom, R = (CP - Cy)K

= 8.31Ux107 erg/°K, u = mean molecular weight = 1/2 for fully ionized
hydrogen plasma, n = number of particles/cm3 = 2np where np 1s the num-
ber of protons/cm®, and k = Boltzmann;s constant = 1.38x107*° erg/°K.

It is fully equivalent and convenient for some purposes to replace the

entropy equation (v - V)S = O in equation (1) by the following energy

equation:
. l Jv_ 2 - —l * =
div [py <é-v2 + #) + ” H W (3 X)EJ 0 (3)




Although only first derivatives appear in equation (l), the fact
that the neglected dissipative terms are describgd by second derivatives
requires that the gradients be small. In magnetohydrodynamics, as in
gas dynamics, however, compressions tend to coalesce and steepen into
finite shock waves of such small thickness that they can be considered
as virtual discontinuities for many purposes. In this way gradients tend
to become very large, and continuous motions tend to break down some place
if they involve compressions. In addition, attraction between like cur-
rents tends to cause current distributions to collapse into thin sheaths,
across which the magnetic field can be considered in the same sense to be
discontinuous. Mathematically, the solution of the dissipationless dif-
ferential equations ceases to exist beyond the point of breakdown, and
the flow is no longer governed solely by the relations given in equation (1).
Mass, momentum, magnetic flux, and energy must still be conserved, however,
and the following relations must hold between quantities on the two sides

of any such discontinuity:

1
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The subscripts n and t refer to components normal and tangential to the

discontinuity surface and [Q] = Q; - Qy where subscripts O and 1 refer




to conditions on the upstream and downstream sides of the discontinuity.
These relations are frequently supplemented by the statement that there
is a current sheet flowing along the discontinuity surface and that the

value J* of this current per unit width is given by

J* = curl H (5)

(15)

Friedrichs and Kranzer have developed an alternative form for

the conservation equations that affords a quick survey of the possible
types of discontinuities and some of their properties, and is particularly
useful in the determination of asymptotic properties of weak discontinu-
ities. It is based on extensive use of mean values {Q) = (Qo + Q;)/2, and
the new varisbles V = 1/p and m = pvy representing the specific volume : :

and the mass flux across the discontinuity. In terms of these verisebles,

the relations given in'equation (4) are as follows:

m(V] - [vy] =0

wly] + [plf + o= (8) - (5]4 - E; HylH] -
(6) ;
m{V)[HE] + (E) vyl - Hpylyl =0, [H) =0
2
m{[e + -—-:‘ + [V] <<p> b= <Ht§ - 81r—]; 2> _ _&.ﬂ_ [VE] - <§t>} =
The last of these may be replaced by
n{le + VI + = GIER NN (O

If the mean quantities are considered known, there are thus eight equa-
tions in eight scalar variables [V], [pl, [y], [B]l, and [e]; observe that

[(Hy] = 0 always.




Since e appears in only the last relation of equation (6), we can
consider alternatively the seven scalar equations in seven variables
defined by the first three relations of equation (6). They are all
linear homogeneous equations, and solutions exist only if the determi-
nant vanishes. Iquating the determinant to zero yields the following
equation for the mass flux m:

n <(V)m - Hn%)-{(v) o ( ) [p] - <H> [p]an} =0 (8)

[V]kse

With the density ey upstream of the discontinuity given, this equation
can also be considered as an equation for the normal component of the
incident velocity Vng*

It may be seen immediately that m = O is a solution of equation (8),
and that three additional plus-minus pairs of real roots exist for which
m £ 0. To follow Landau and Lifshitz'**), we call discontinuities which
lie along streamlines (m = PVy = 0) tengential discontinuities or contact
discontinuities according to whether or not the normal component of the
magnetic field H, wvanishes. Discontinuities across which there is flow
(m £ 0) are divided into categories. Those associated with the roots
m = iHn/(hn<V>)l/2 are called rotational discontinuities, although they
are frequently termed transverse or immediate shock waves by many authors.
The term shock wave is reserved here, however, for the discontinuities

assoclated with the four remaining roots.




3. TANGENTIAL DISCONTINUITIES

Tangential discontinuities are defined as those in which both m and
Hy, vanish. For these conditions, equations (4) and (6) yield the follow-
ing relations between the quantities on the two sides of the discontinuity

surface:

vn=Hnp=0; [gwl#0, [Hlf0, [elf0

(9)
[p + H®/8x]

[p*] = 0

Although the velocity and magnetic field are required to be parallel to

a tangential discontinuity, these relations show that the density and the
tangential components of the velocity and magnetic field may have Jjumps

of any magnitude. The other thermodynamic quantities, suph as temperature,
entropy, etc., are also discontinuous in accordance with their definitions
provided in equation (2). The sum of fluid pressure p and magnetic
pressure H2/8n mist, however, be continuous across a tangential
discontinuity.

It is important to observe that the properties of tangential discon-
tinuities defined by equation (9) are compatible, although not identical,
with those normally prescribed for the boundary of the geomagnetic field
in the Chapman-Ferraro_theory. In both cases, the condition Hp = O
holds and requires that there is no connectivity between the geomagnetic
field and the interplanetary field embedded in the solar wind. The dif-
ferences stem from the additional assumptions in the Chapman-Ferraro theory
that the incident plasma is free of magnetic field (H, = 0), and the cavity
containing the geomagnetic field is free of plasma so that p, = 0; thus

Py = H12/8n. The absence of a magnetic field in the incident stream,

S,
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taken together with the extremely long mean free paths, implies there is
no interaction between the particles prior to their encounter with the
current sheath forming the boundary. The pressure is therefore taken to
be proportional to the normal component of the momentum flux of the undis-

turbed incident stream, thus
Kpovﬁo = KpgveZ cos? ¢ = H12/8ﬁ (10)

where V¥ 1s the angle between the normal to the boundary and the velocity
vector of the undisturbed incident stream, and K is a constant equal to
2 if specular or "elastic'" reflection is assumed, or unity if "inelastic"

reflection is assumed,
4, CONTACT DISCONTINUITIES

The properties of contact discontinuities are giveﬂ by solving equa-

tions (4) or (6) with m = O and Hy £ O. They are as follows:
vp=0, Hi#0; [yl=(HBl=I[p)l=0, [plfoO (11)

These relations show that the fluid not only flows parallel to a
contact discontinuity in a steady flow, but that the velocity, pressure,
and magnetic field must be continuocus. The density, and therefore the
temperature, entropy; and other thermodynamic variables, may have any
discontinuity, however.

The properties of contact discontinuities differ substantia}ly from
those used for the boundary of the geomagnetic field in the Chapman-Ferraro
theory and from those observed in space over the forward part of the mag-
netopause by satellites such as IMP-I. They appear to be appropriate,

however, for the boundary of the distant wake far downstresm from the
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earth or moon. There any current system or velocity discontinuity, such
as exists on the forward part of the earth's magnetopause, has ample time
to diffuse or decay no matter how slight the departures from perfect elec-
trical conductivity or inviscid flow. Under these circumstances, the
external magnetic field penetrates the discontimuity, and ultimately at
great distances downstream may be expected to traverse the wake completely
without distortion. Thermodynamic properties of the'wake remain differ-
ent from those of the surrounding flow, however, because of the different

previous histories of the gases,
5. ROTATIONAL DISCONTINUITIES

The properties of rotational discontinuities are determined by

solving equations (L) or (6) with m = mp

iHn/(hn<V))l/2. They are

o = /() 2, [y [H¢]/ (o) */®

V,
[p] = [p] = [w] = [v] = [HB] = O

(12)

These relations show that the magnitudes of all quantities are continuous,
and that the only changes across a rotational discontinuity are the direc-
Lions of the magnetic field and velocity vectors, both of which rotate by
an equal angle about the normal to the discontinuity. The flow'velocity
component vy normal to a rotational discontinuity is equal to the phase
velocity of an Alfvén wave in the direction of the wave normal, and is
moreover independent of the strength of the discontinuity. There is thus
no tendency for a series of weak rotational discontinuities in a homoge-

neous medium either to overtake one another and coalesce into a shock wave

or to spread out as in an expansion fan. Although there has been considersble

e i e, cma e e
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discussion of possible effects of traveling rotational or Alfvén waves

in the magnetosphere and in space (see, e.g., MacDonald(l?) for a recent
review), the role and importance of stationary rotational discontinuities
in the steady state flow of solar plasma past the earth or moon are not

known.
6. SHOCK WAVES

The mass flux m through magnetohydrodynamic shock waves satisfies

the equation

Dm* + ((WIp1/V] - 7 /i)m2 - [plE,Z/ bx(V] = O (13)

obtained by setting to zero the last factor of equation (8). Equation (6)

together with the further requirement stemming from entropy considerations
that all shock waves are compression waves yields the following relations

between the quantities on the two sides of such a shock wave

(Be) = (8] = ———%__, [(m) -0, [g1°-2(8) - (&

(14)
m[V]Hn/gé\/hﬂ
-<>2\/2/, [vol = -Vln, [VI<o, [p]>0
V m -Hn Lht '

[Vt]

where m represents any of the four roots of equation (13). The first
of these indicates that the sum 2(§t) and difference [Hy] of the tangen-
tial components of the magnetic fields on the two sides of the shock wave
lie in either the same or opposite directions. This requires the shock

normal 1N and the magnetic field vectors on the two sides of the
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discontinuity to be coplanar. The velocity relations also show that the
tangential component of the velocity discontinuity [v¢] = Vi, - Vb, 18
in the same or opposite direction as <§€> and therefore in the same plane
as Ho and Hi.

Discussion of the properties of shock waves characterized by the

various rocots for m is facilitated by rewriting equation (13) as follows:

(x2 + [p)/IV])) (W) - B/he) = xP(Ee) /b (15)

Since the roots m = my = iHn/(Mﬂ<V>)l/2 are not considered in this sec-
tion, it follows that mp® > - [p]/[V] if u® = mfa > mZ, and conversely
that m® < - [p]/[V] if m® = m® < m2. Shock waves characterized by
the larger value mp for the mass flux are called fast, those by the

smaller value mgy slow. The mass flux across either class of shock waves

mist therefore satisfy the inequalities
me 2 mp2mg , me 2 - [p]/[V] 2 mg (16)

It follows immediately from equations (1k) and.(l6) that Hi, HZ, and Vi
all increaée through a fast shock wave, and decrease through a slow shock
wave,

Solutions of equations (4) or (6) are determined by straightforward
but lengthy algebraic manipulation, details of which are available in

(27) (18)

several sources (see, e.g., Anderson or Jeffrey and Taniuti for

recent summaries). It is important to recognize, however, that these
equations possess extraneous solutions that cannot occur in nature. These
solutions were originally referred to as unstable, but this term has now

been generally abandoned as it has become known that this is not an ordi-

nary instability growing exponentially with time, but rather a sudden




SN

1k

disintegration of the shock wave, Alternatively, a solution containing

an extraneous shock wave does not have neighboring solutions correspond-
ing to-a small change in the boundary condition which requires an arbi-
trarily small angle of rotation of the plane of the magnetic field.
Identification of the physically relevant solutions cannot be made on the
basis of entropy considerations alone, as in ordinary gasdynamics. It is
necessary in magnetohydrodynamics to consider how a shock wave could

evolve through waves of small amplitude overtaking one another and coalesc-
ing. The appropriate requirements for a physically relevant solution may
be stated in general mathematical terms by a pair of evolutionary condi-

(18))

tions (see, e.g., Jeffrey and Taniuti . A more physical description
that leads to the same conclusions has been given recently by Kantrowitz
and Petschek(lg). From either point of view, it is found that no addi-
tional conditions need be imposed for fast shock waves, and that the con-
servation equations possess extraneous solutions only for slow shock waves.
Fortunately, the extranecus solutions can be récognized easily by the fact
that they indicate the tangential component of the magnetic field to be
directed oppositely on the two sides of the discontinuity, a physical
impossibility in all but certain degenerate cases. Since the first of
equations (14) shows that the tangential component of the magnetic field
cannot reverse direction through a fést shock wave, one has the general
result that the tangential components of the magnetic field on the two
sides of any physically relevant shock wave must always lie in the same
direction. A further consequence of these considerations is that the

flow velocity must be greater than the rotational wave speed on both sides

of a fast shock wave, and less than the rotational wave speed on both sides

B

S 4 v



15

of a slow shock wave., It follows immediately that a fast shock wave
overtakes a slow shock wave, and that a slow shock wave cannot overtake

a Tast shock wave. In application to the supersonic flow of the solar
wind past either the earth's magnetosphere or the solid moon, it is antic-
ipated therefore that the bow wave would be a fast magnetohydrodynamic
shock wave. Slow shock waves, as well as additional fast shock waves,

may be expected in the flow downstream of the bow wave, however.
7. WEAK SHOCK WAVES

The relations given in equations (13) and (14) simplify for weak
shock waves to the point where they can be expressed explicitly in terms
of the sound speed a, .the Alfvén speed A, and its components A, and Ag
normal and tangential to the plane of the discontinuity surface. The

latter are defined as follows:

A= (82/brp) 3, Ay = (H22/lp)Y'® = Alcos 6], At - (th/lmp)l/a = Alsin o]

(17)
where 6 refers to the angle between the magnetic field H and the shock

normal A. For such shock waves, the jump [Q] in every quantity Q is
muich smaller than the quantity itself, and the desired simplification can
be accomplished by simply removing the mean value brackets and replacing,
for clarity of expression, the difference brackets with &, i.e., <Q> = Q,
[Q] = 8Q. Egquation (13) may then be solved to yield the following expres-

sion for the normal velocity component v, of the incident stream:

1/2

vy = 2[5 {e2 + 22 sl + B)7 - uePn® }] (28)

e e nn g e
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With wv, teken positive, the larger of the two values obtained by using
the plus sign before the imner radical pertains to the fast wave, and the
smaller to the slow wave,

Equation (18) coincides with the corresponding expression for the
velocity component normal to the characteristic surfaces of equation (l),
and may be recognized, upon changing to a reference frame fixed in the
Tluid upstream of the shock wave, as the appropriate expression for the
Phase velocities of fast and slow traveling hydromagnetic plane waves,

The provagation of such waves 1s conveniently described graphically by

the familiar normal speed or Friedrichs I diagrams, examples of which

are shown in Fig. 1 for a =+2A, a = A, and a = A/N2. In these diagrams,
Vp 1is plotted as a function of angle 6 between the shock normal and the
magnetic field H (here taken parallel the horizontal axis). The outer
curve in each diagram represents the results for the fast wave, the inner
curves the results for the slow wave. Also included are dotted curves
representing the normal velocity of a rotational discontinuity defined by
equation (12). For ease of illustration, the diagrams are drawn for the
Plane containing the wave normal and the magnetic field vectors. The cor-
responding results for more general orientations are represented by the
corresponding three-dimensional surfaces formed by rotating the plane curves
of Fig., 1 about the 6 = 0 axis., These plots illustrate that, for any
direction 6, the speed of a rotational wave is intermediate between that
of the fast and slow waves., Further, v, for the fast wave is eéual to
the larger of a and A when the wave normal is parallel to H (6 = 0),
and to (a2 + A.g)l/2 when the wave normal is perpendicular to J (6 = x/2).

For the slow wave, v, vanishes when 6 = n/2, and is equal to the smaller
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of aand A when 8 =0. If A approaches zero while a remains finite,
the surfaces representing the slow and rotational waves disappear and the
surface representing the fast wave gpproaches a sphere of radius a. Under
these circumstances, the equations of magnetohydrodynamics approach those
of gasdynamies, and calculations based on aerodynamic methods should pro-
vide a good approximation for most applications. If, on the other hand,

a apprecaches zero while A remains finite, the surfaces representing

the slow wave disappear, that representing the fast wave approaches a
sphere of radius A, and those representing the rotational discontinuity
are spheres of radius A/2 as always. Although equation (18) clearly shows
the normal velocity cof flast and slow waves to be invariant with interchange
of values for a and A, and the former to become independent of direction

6 as a vanishes, it 1s important to observe that rotational discontinu-
ities retain a finite normal velocity and that neither the differential
equations nor shock relations of magnetohydrodynamics approach those of
gasdynamics in this limit (except in a special and restricted sense for

flows in which the wvelocity and magnetic field vectors are parallel at

s(19))!

all point
The jump relations given in equation (14) reduce similarly in the

limit of weak shock waves to

2
nHy B 2
61;1-{; -\;—2—-:—2\—5'5&, 6Hn=0, SE =2§'8I;I
n n

(19)

VnAthAn > 5p [ HeHp ] Sv
it N —— D ——— n = Vnﬁp
<"n‘2 - 22/ P U gyl Ea]d ]

where the quantity in the last bracket of the expression for ©dvy gives

oV,

ey
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the direction and sign of that quantity. The corresponding expressions
for the change in pressure P and entropy S across a weak shock wave

are (see, e.g., Jeffrey and Taniuti(la))

ks <8o—p>2 : {y(yil)g i u(f/jxi;)-(iiznj%?)?} @2)3 T

’dlrg

= ¢ 1 =1) gyl ¥ }- §é>3 e
v }+ 3 (an_ATlE)E(aZ/A’tZ) fo]

The latter relation shows the change in entropy through a weak shock wave
to be proportional to only the third power of 6p/p, and hence to be van-
ishingly small for weak waves. Physically, this indicates that infinites-
imal expansions, as well as compressions, may be considered without violation
of the entropy requirement. Thus dp may be either positive or negative.
Moreover, equation (20) shows that, although the change in pressure through
& weak discontinuity is proportional to dp/p, the first term in which the
magnetic field appears is proportional to (8p/p)®. The changes in entropy
and pressure through magnetohydrodynamic expansions or compressions are
thus the same as in gasdynamics until the strength of the discontinuity
is sufficiently great that third order terms must be retained. - As indi-
cated by equation (19), however, this statement does not extend to other
quantities such as the velocity or the magnetic field.

These results for weak compression and expansion waves are Pseful
for describing conditions at great distances from the earth or other dis-
turbing obstacles where it can be safely assumed that 8p/p << 1. They
are not sufficient for the discussion of the entire bow wave problem, how-

ever, because conditions typical of the solar wind in the vicinity of the

[
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earth's orbit are such that B8p/p may easily exceed unity near the nose.
The mexirum value for the density ratio across a hydromagnetic shock
wave is finite, however, and given simply by pl/po = (7 + l)/(7 - l),

Just as in gasdynamics.
8. GEOPHYSICAL APPLICATION

The concepts and equations of magnetohydrodynamics summarized in
the preceding sections will now be applied to the specific geophysical
problem of the interaction of a steady solar wind and the geomagnetic
field. The permanent component Hp of the latter is represented by a
centered magnetic dipole having a magnetic moment M@ = Hpoaes, where
Hpo = 0.312 gauss represents the earth's mean permanent field at the
geomagnetic equator and ag = 6.37x108 cm represents the mean radius of
the earth. With the dipole located at the origin and aligned with the

coordinate system as illustrated in Fig. 2, gp is given by
Hp = -(Mp/rs)(é sin 6 + T2 cos @) | (21)

The total magnetic field at any point is then the sum of Hp and the
induced magnetic field H' due to currents in the plasma.
Two important parameters that characterize the flow at any point

are the Mach number M and the Alfvén Mach number M, defined by

M= v/a, My = v/A (22)

L4
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where a represents the speed of sound defined in equation (2), A the
speed of .an Alfvén wave defined in equation (17), and v = |y| repre-
sents the fluld speed, Values for a and A for conditions typical of
those encountered in the solar wind as it flows around the magnetosphere
are illustrated in Fig. 3. The solar wind is known to vary substantially
with time, but nunber densities of the order of 2.5 to 25 protons/cm?,
magnetic fields of 3 to 10y (ly = 107° gauss), and temperatures of

50,000 to 100,000°K may be considered representative. Since the veloc-
ity of the incident solar wind ranges from about 300 to 800 km/sec, it

1s evident that the free-stream Mach number M and Alfvén Mach number

MA are generally much greater than unity.
[ve]

(a) Asymptotic directions of shock waves and wake

When M and Mﬂb are given ‘together with the directions of the
veloeity and magnetic field vectors v, and gw in the undisturbed inci-~
dent solar wind, the asymptotic directions of the magnetosphere tail (or
wake) and shock waves at great distances from an obstacle can be deter-
mined immediately by a simple geometrical construction based on the nor-
mal speed diagrams of Fig. 1. The results apply equally whethef the
obstacle is in effect the confined magnetic field as in the case of the
earth's magnetosphere, or the solid object itself if its magnetic field

is not sufficiently strong to withhold the solar wind. Although®their

o !
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magnetic filelds have nof yet been determined with sufficient accuracy
to make a definitive statement, the moon and Venus may be examples of
the latter possibility.

This construction is illustrated in Fig. L(a) for a case in which
the magnetic field vector H, 1is inclined MSO from the free-streaﬁ
velocity vector, and My = J2M. For ease of illustration, M has
been assigned a somewhat low value of 2, and only the traces of the
various three-dimensional surfaces in the plane containing the velocity
and field vectors are shown. The origin is placed in the obstacle, and
the horizontal axis is aligned with the direction of the free-stream
velocity vector -y, as indicated. With center at the tip of the vector
Vo» and 6 measured from the direction of J_, equation (18) is used
to construct curves representing the normal velocities of weak shock
waves and rotational discontinuities. Except for a translation of the
origin and rotation of the axis, the latter are, of course, the same as
shown in Fig. 1 for é/A =.f§. The asymptotic directions of the vari-
ous discontinuities at great distances from the obstacle can now be
determined by application of the theorem that states that the tﬁo lines
drawn from any point on a circle to the extremities of a diameter inter-
sect at a right angle. The required construction is thus performed

simply by drawing a circle of radius v _/2 with center at y /2 and

connecting the origin to the various points of intersection with the

R S

ogme e e
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normel speed curves by straight lines as indicated in Fig. L(a). The
asymptotic directions can also be determined by constructing tangents
to the related Friedrichs II diagram for the waves from a point dis-
turbance as described by Sears(zl) and illustrated in Fig. h(b), but
the construction employed in Fig. 4(a) is more direct and fully equiv-
alent for the present purposes.

Also indicated in Fig. L4 is the asymptotic direction of the mag-
netosphere tall or wake, which as noted previously would be represented
by eilther a tangential discontinuity or a contact discontinuity depend-
ing upon whether the normal component of the magnetic fiéld vanishes
or not. In either case, equations (9) and (11) show that vy = O
indicating that the wake must be aligned parallel to ¥ independently
of the direction of the magnetic field. The orientations of the other
discontinuities illustrated in Fig. L4 change, however, as the direc-
tion of the magnetic field vector is altered, The extent of these
changes can be readily visualized, moreover, since a change in the
direction of the magnetic field leads to a rotation of the Friedrichs
speed diagrams about the end of the fixed y, vector, and this in
turn leads to associated changes in the intersection points of Fig. M(a)

or the tangency points of Fig. 4b).
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(b) Relation between hydromagnetic and gasdynamic flows

Although the diagrams of Fig, 4 are for the case in which the
free-stream Mach numrber is 2 and the speed of sound is Jé'times the

’ < /2
Alfvén speed, that is for (a/A)oo = (Lm7poo/Hooz)l

= J2, the qualita-

tive character of these diagrams remains the same for all Mach numbers

and ratios (a/A) ~ greater than unity. If A, should become small rela-
tive to a,, however, as might readily occur if the magnetic field should
diminish in intensity, the inner loops representing the propagation speeds
of rotational and slow waves become small relative to the outer ovals rep-
resenting the fast waves. Finally, if the magnetic field approaches zero,
the inner loops shrink toward a point at the end of the X, vector while
the outer oval approaches a circle (or sphere in the corresponding three-
dimensional representation) of radiﬁs 8o In this way, the fast hydro-
magnetic wave degenerates to the Mach wave of ordinary gasdynamics, and
the rotational and fast waves lose their physical significance. The fluid
and electromagnetic aspects of the flow thus decouple, and the fluid motion
is described entirely by the equations of gasdynamics. The approach to
the limiting case appears, moreover, to be free of singular behavior and
it is to be expected that gasdynamic theory will provide a useful approxi-
mation to hydromagnetic flows when (a/A)oo is substantially greater than
unity. It should be observed, however, that the gasdynamlic Mach number
should be associated with the Mach number M of the correspondigg hydro-
magnetic flow, rather than the Alfvén Mach number Mp as has been done

in most previous discussions of this application.



If, on the other hand, the Alfvén speed is substantially greater
than the sound speed, as would occur if the megnetic field is sufficiently
strong, the inner loops representing the slow wave speed again shrink
toward a point at the end of the v, vector, while the outer oval rep-
resenting the fast wave speed approaches a circle of radius A . The
resulting asymptotic directions for fast waves in a hydromagnetic flow
of Alfvén Mach number Mﬁx thus approach those of gasdynamics for Mach

(21)

nuiber M =My . As described by Sears and others, the flows are
o0
not necessarily similar, however, because the physically significant waves

i, are

for certain combingtions of M&, Mﬂn’ and angles between Yy, and
those that extend upstream rather than downstream from the disturbance.
When such conditions prevail, hydromagnetic flow about a given obstacle
may still tend to resemble gasdynamic flow about the same obstacle, but

the flow direction of the related incident stream must be reversed.

(¢) Aligned flows

Clarification of the latter point can be attained by considering
the case in which the magnetic field is aligned with the wvelocity vector
in a steady and uniform incident slrean. Imai(zo), Grad(zz), and others
have shown for this case that the differential equations and cdnservation
relations of‘hydromagnetic flow (i.e., equations (1) and (4)) require
that

1= Moy : (23) ;

where A 1s constant on a streamline. More importantly, they have also
shown that these equations can be reduced to those of conventional gas-

dynamics (although of a hypothetical gas having an unusual equation of
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state) upon introduction of the pseudoquantities related to the actual

rhysical quantities as follows:

v = vl - (\®p/kt)] = y(1 - 1,7)
- o -1
o* = o[l - (W¥p/ix) 1™ = o(1 - 1,%)
(24)
P* = p + H2/8x
S* = S
The equation of state of the hypothetical gas is given by
p*(p%;8,N\, 1) = p(p,8) + A%p®[hy - h(p,8)]/k (25) ‘

Application of the thermodynamic relations dh = dp/p and a® = dp/dp

along a streamline yields the following important auxiliary relations

b¥ = b+ A5(1 - M;7/2)
a* = (1 - 45)%[a2(1 - M7) + A7) (26)
w2 = (v/ax)® = MAM,2/ (02 + M, - 1)

where h, 1s the stagnation enthalpy on a given streamline. The approach
to gasdynamics as H tends to zero and MA to infinity is clearly evi-
dent from these relations., Although the mathematical analog holds for

1, less than unity since the

all M, it is clearly i
pseudodensity p* 1s negative, and the analog flow is in the reverse
direction to the actual flow since y* and y are of opposite sign. Never-
theless, such applications have been carried out in complete detail for sub-
Alfvénic (Mp < 1) flow past an obstacle (see, e.g., Tamada
To complete the analog, consider the way in which the boundary condi-

tions transform when the relations of equation (24) are applied. With MA

typically substantially greater than unity in the free stream, the boundary
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condition of uniform flow of given Mm eand My  at great distances from
[ee]
the obstacle transforms directly into a uniform flow in the same direction

/
)lvz. In applica-

naving a pseudo Mach number M¥ = MOOMAOO/ (2 + Mioo -1
tions to hydromagnetic flow around an unnagnetized planet or moon, the
boundary condition that vy = O at the body surface carries over unchanged
as Vh* = 0, and the entire problem reduces immediately to a standard,
although nonlinear and difficult, problem in gasdynamics.

Additional considerations are necessary, however, in applications to
flow around the magnetosphere of a magnetized planet such as the earth for
which the location of the tangential discontinuity representing the mag-
netosphere boundary must be determined as part of the solution. The con-
ditlon specified in equation (23) is satisfied everywhere outside the
magnetosphere boundary whenever E  and v, are parallel, but extension
of this condition to the interior of the magnetosphere appears neither
necessary nor appropriate., To be more explicit, all estimates of the mag-
nitudes of the gas pressure p and the magnetic pressure H2/8ﬂ in the
outer magnetosphere lead to the conclusion that p << H2/8ﬁ. So far as
the flow outside the magnetosphere is concerned, the magnetosphere bound-
ary may thus be represented by the limiting case of a tangential discon-
tinuity in which there is a vacuunm (p = 0) on one side, and across which
the sum of gas and magnetic pressure of the exterior flow must be balanced
entirely by the magnetic pressure of the magnetosphere. The maggetosphere
boundary thus becomes a real boundary of the flow and the analog to gas-
dynamics 1s completed except that the shape and size of the obstacle cor-

responding to the magnetosphere is not known a priori, but must be

determined as part of the solution much as in the classical theory of
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free-streamline flows in hydrodynamics (see, e.g., Lamb(24)). The form
and size of the magnetosphere boundary are, however, effectively inde-
pendent of the details of flow within the magnetosphere, and determined
primarily by the interaction between the magnetic field within the mag-
netosphere and the hydromagnetic flow arcund the exterior. There is
still flow to be expected within the magnetosphere, but it would be
required to move about as if it were confined in a container described

by the magnetosphere boundary.
9. RESULTS OF GASDYNAMIC CALCULATTIONS

Although the experimental confirmation by IMP-I satellite of the
theoretical location of the magnetosphere boundary and associated bow

(20)

shock wave calculated by Spreilter and Jones provides one of the major
justifications for the study of continuum models for the flow of solar
plasma around the magnetosphere, it should be observed that these calcu-
lations are accomplished through use of four important approximations, the
accuracies of which are not immediately self-evident. First, the flow
around the magnetosphere and the position of the shock wave are calculated
by means of gasdynamic rather than hydromagnetic theory. Second, the
fluid pressure at each point of the magnetosphere boundary is assumed to

be given by the simple Newtonian formula quymg

cos? V¥ where in con-
trast to the notation used in equation (10) the density and velocity of
the undisturbed incident stream are represented by oo and Vs and K

is a constant equal to unity. Third, the magnetic field just inside the

magnetosphere boundary which provides the balancing magnetic pressuré

H2/8x is assumed to be approximated sufficiently well by twice the
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tangential component of the geomagnetic dipole field. Fourth, the shape
of the magnetosphere boundary is approximated by an axisymmetric figure
defined by rotating about the sun-earth line the equatorial plane trace
of the magnetosphere boundary calculated with the second and third
approximations.

Except for the special case of aligned flow for which Imai's analog
defined by equations (23) through (26) can be applied, the first approxi-
mation is virtually a necessity at the present stage of capabilities in
the solution of supersonic flow around blunt obstacles, but fortunately
is probably justifiable in most cases on the basis of the high Alfvén
Mach number characteristic of the flow at all points outside the
magnetosphere,

The second may appear to be a vestigal remnant of the older free
particle model of Chapman and Ferraro (see, e.g., Chapman(zs) for a
review) for the magnetosphere boundary, but will be shown herein to
actually provide a good approximation for the pressure in the fluid
model, particularly if a slight adjustment is made in the value of the
coefficient K. 'Its use has the very important effect of enabling the
shape of the magnetosphere boundary to be determined without further
consideration of details of the surrounding flow.

The third approximation is purely a convenience at this stage of
the analysis. The shape of the complete magnetosphere boundary @as
been determined by using this approximation by Briggs and Spreiter(as)
and without it, but with the pressure still given by the Newtonian

(27) (28)

formula by Midgeley and Davis and Mead and Beard . As shown by
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the latter authors, however, the exact and approximate coordinates of the
boundary differ by only a few per cent. In any case, further simplifica-

tion of tlie shape of the magnetosphere boundary is necessary since the

present state of development of the theory of supersonic flow around three-

dimensional blunt nosge ohstacles engbles calculationg to be made only for
axisymetric flows, and the magnetosphere boundary is not indicated to be
verfectly axisymmetric by any of the above calculations.

The principal gasdynamic result presented by Spreiter and Jones(lo)
was a plot of the calculated position of the bow shock wave assoclated
with the simplified axisymmetric magnetosphere described in the preced-
ing paragraphs. The calculations were performed for a ratio of specific
heats y of 2, and a free-stream Mach number of 8.71. The latter was
identified with the free-stream Alfvén Mach number associated with a rep-
resentative choice of values for the density, wvelocity, and magnetic

e P i =) -~ ~ 2 2~ -~
. It follows from the discussion of the

N

field of the incident solar win
preceding sections, however, that the gasdynamic Mach number should more
properly be identified either with the free-stream pseudo Mach number M¥
defined in equation (26) if the flow is aligned with the magnetic field
and the Alfvén Mach number is greater than unity, or with the free-stream
Mach nunber if the field has arbitrary alignment and is sufficiently weak
that the Alfvén Mach number is much greater than unity. Further results
of the gasdynamic calculations were not presented, however. It is there-
fore the first purpose of this section to provide further details of the
flow field, such as, the density, velocity, temperature, etc. In order
to facilitate comparison and interpolation, these results are presented

for a free-stream Mach number of 8 rather than 8.71.
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The necessary calculations have been carried out by the same methods
employed by Spreiter and Jones(lo); namely those described by Inouye and
Lomaxc'®®) using the basic method of Van Dyke'®°) and Van Dyke and Gordon( ™)
as modified by Fuller(sz). The nethod used for the subsonic region and
the immediately adjoining portion of the supersonic region i1s an indirect
one in which the location of the bow shock wave and the conditions across
it are given and the resulting flow field and body shape are found as
part of the solution. The solution for the desired body, the magnetosphere
boundary in the present application, is then found by iteration following
judicious selection of the trial bow shock wave shape based on experience
with a vast number of cases of aerodynamic interest. A more complete dis-
cussion of details of the method including related mathematical aspects,
such as, convergence, stability, and accuracy, has recently been given by
Lomax and Inouye(ss). The solution for the remainder of the supersonic
region is accomplished by the method of characteristics described explic-
itly by Inouye and Lomax(zg).

Figure 5 shows a plot of the magnetosphere boundary and shock wave
position for 7y = 2 and M = 8 in terms of a dimensionless length scale
in which the distance D from the center of the earth to the magneto-
sphere nose is unity. The appropriate expression for D consistent with

the assumptions enumerated at the beginning of this section is

1/e
)

. (27)

1/3 2

D = adlp, /(&Ko v,

where ag = 6.37x108 cm and HPo = 0.312 gauss as noted previously. It
is now well established that D is generally of the order of 10 earth

radii, and fluctuates with time in response to variations in the density
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P, and velocity v, of the incident stream. Except for the normalization
of the distance scale and slight changes due to the difference in free-
stream Mach number, the curves shown in Fig. 5 are exactly as given by

(10)

Sprelter and Jones Also included on this figure, however, are sev-
eral additional solid lines representing streamlines, and broken lines
representing characteristic or Mach lines of the flow. The latter corre-
spond to standing compression or expansion waves of infinitesimal ampli-
tude. As indicated by equation (18) with A = O, they cross the streamlines
at such angles that the local velocity component normal to the wave is
always exactly equal to the local sound speed. Mach lines thus exist
only where the flow is supersonic; thelr absence from the vicinity of
the magnetosphere nose is a consequence of the flow there being subsonic.
This plot also shows that the angle between the shock wave and the inci-
dent stream is much larger than the asymptotic angle along the entire
length of the shock wave included in the illustration, the asymptotic
angle being easily recognized as equal to the angle between the stream-
lines and Mach lines of the incident undisturbed flow upstream from the
bow shock wave. It follows at once that knowledge of the asymptotic direc-
tions of weak shock waves is of limited usefulness in the estimation of
the location of the bow shock wave, except at extremely great distances
from the earth.

Contour maps showing lines of constant density p, velocity‘ v,
temperature T, and mass flux pv, each normalized by dividing by the
corresponding quantity in the incident stream, are presented in Figs. 6,

7, and 8 for the same conditions as in Fig. 5, namely, M_ =8 and 7y = 2.
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t can be seen that the density ratio p/poo immediately behind the shock
remains close to the meximm value {y + 1)/(y - 1) = 3 for a strong shock
wave in a gas with 7 = 2.along nearly the entire length of the bow wave
shown. The gas undergoes only a small additional compression as 1t nears
the stagnation point at the magnetosphere nose and then expands to less
than free-stream density as it flows around the magnetosphere. The veloc-
ity remains less then in the free stream, however, throughout the same
region. The temperature ratio T/TOo is closely related to the wvelocity

ratlio through the expression

- 1M 2
%l -1 SZ___)E&L_<%._;¥§> (28)
o 7 o

derived by integrating equation (3) with H = O, combining with relations
for the enthalpy h and speed of sound a given in equation (2), and
rearranging. If values for 7 and M are given, it is then a straight-
forward and simple calculation to determine T/T(>° as a function of V/Wx.
The results presented in Fig. 7 show that the temperature is substantially
higher than in the free stream throughout the entire region illustrated
in Figs. 5 through 8. If, e.g., the temperature of the incident solar
wind is EO,OOOOK, the temperature at the magnetosphere nose is indicated
to be nearly 2,OOO,OOOOK. This value is consistent with the temperature
possessed by the gas in the solar corona before it was accelerated to the
high velocities characteristic of the solar wind in the vicinity of the
earth's orbit. Although the gas cools considerably as it flows around

the magnetosphere, it is still sbout 850,OOOOK as it passes the station

of the earth (x/D = 0) and sbout 400,000°K farther downstream at x/D = 1.




Although the mass flux ratio is simply the product of p/poo and v/Vjm
already illustrated in Figs. 6 and 7, it is included here because of its
relation to the quantity customarily measured by plasma probes and because
of the interesting shapes of the contours. It should be observed before
closing this discussion that the constant velocity contours of Fig. 7 can
alsc be used to represent, with a suitable relabeling, lines of constant
local Mach number M = v/a. This statement follows from equations (2) and
(28) which show that a is proportional to 12/2 for a given pair of values
Tor 7y and p, and T/Too depends only on V/V@ for given M& and y. There
exists, therefore, for flow characterized by given Mw, 7, and K, a unique
value for M associated with every value for v/ym. Contours for con-
stant local Mach nurber are thus identical to those for constant velocity
ratio. Similarly, since the mean velocity of the particles is propor-
tional, but not equal, to the speed of sound according to the simple
kinetic theory of a gas, contours of constant ratio of directed to ran-
dom velocity are also identical to those for constant v/v,.

The choice of the value 2 for the ratio of specific heats employed
in calculating Figs. 5 through 8 is justified in a variety of ways, gen-
erally centering around the presumed two-degree-of-freedom nature of the
interactions of charged particles in a magnetic field. This argument
weakens, however, when consideration i1s given to the extremely irregular
character of the magnetic fields observed in space, particularlx down-
stream of the bow shock wave. In fact, the whole concept of applying
hydromagnetic theory to the flow of solar plasma around the magnetosphere

involving as it does the assumption of an isotropic pressure appears more
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consistent internglly if the particles are considered to behave as if
they have three rather than two degrees of freedom. Since 7y = (N4-2)/N
where N is the nurber of degrees of freedom, results parallel to those
presented in Figs. 5 through 8 have been calculated for M, = 8 and

Yy o= 5/3. The results, presented in Figs. 9 through 12, are similar in
all qualitative features to those for 7y = 2. Quantitatively, however,
the standoff distance of the shock wave is less, the density is generally

somewhat higher, and the temperature substantially lower for y = 5/3 than

Reference to Fig. 3 and the accompanying discussion shows that the
value of 8 for the free-stream Mach number is well centered in the range
of values to be expected in the incident solar wind. The velocity and
termperature, and therefore the speed of sound, vary over a considerable
range, however, and it is of interest to determine the extent to which
conditions in the flow around the magnetosphere change with Mach number.
Further calculations have been made therefore for Mach numbers of 5 and
12 for a gas with 7 = 5/3. Since most of the results are so similar to
those presented above, they are presented in abridged form in Figs. 13
through 15. Figure 13 shows the position of the bow shock waves for these
conditions together with the results for M = 8, shown in Figs. 5 and 9.
It can be seen that the bow wave recedes from the magnetosphere as the
Mach number diminishes and as 7 increases. The change is smal}, how-
ever, as the Mach number is increased from 8 to 12. The entire portion
of the bow wave shown in these figures is, in fact, very near its asymp-

totic position for infinite Mach number, and further increases in Mach
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nurmber are virtually without effect. This lack of dependence on Mach
nudber does not apply, however, far downstream of the earth where the
vow wave approaches alignment with the asymptotic direction of weak dis-
cortinuities in the undisturbed incident solar wind. The variation of
density, velocity, end mass flux a2long the magnetosphere boundary sand
the downstream side of the shock wave are shown in Fig. 1k. The most
striking conclusion is that these quantities are virtually independent
of Mach number, and only slightly dependent on 7. On the other hand,
results presented in Fig. 15 show that the temperature depends strongly
on Mach nurber and vy, with higher values associated with higher Mach
nuribers and larger 7, a trend clearly revealed by inspection of
equation (28).

A useful quantity for characterizing the location of the bow shock
wave is the standoff distance A at the nose of the magnetosphere. This
distance 1s controlled to a large degree by mass conservation considera-
tions, since the mass flow passing between the magnetosphere and the bow
wave at any station must match that crossing the bow wave inside that
station. More specifically, the standoff distance at high Mach numbers
1s determined almost entirely by the density ratio pl/gDO across the
bow wave on the stagnation streamline. The latter is related to the free-
stream Mach number and the ratio of specific heats according to the
Tollowing expression:

Ei _ (7 + l)M®2 (29)
P (y - M2 + 2

The variation of standoff distance with pl/gn is presented for a wide

range of values for 7y and free-stream Mach number M = in Fig. 16. As

\
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brevicusly shown in an aerodynamic context by Seifi(34) and Inouye(ss), this
distance variles nearly linearly with Qw/pl over a wide range of condi-
tions. With the standoff distance A normalized by the distance D from
the center of the earth to the nose of the magnetosphere, the following

pimple cmpirical formule emerges

A/D = l.lpw/pl (30)

In order to illustrate further details of supersonic flow of a com-
pressible gas past the magnetosphere, an experiment was conducted in the
fmes Research Center, Supersonic Free Flight Wind Tunnel, by Donn Kirk in
which shadowgraph photographs were taken of a metal model of the magneto-
sphere in flight at Mach numbers between about 4.5 and 5 through argon.
In normal use of this facility, models are fired from a 50 caliber light-
gas gun upstream through an elongated test section 6f an otherwise normal
supersonic wind tunnel. The working fluld normally employed is air, but
other gases can be used for a more limited range of +test conditions that
can be reached by shooting the models into stationary gas. In other words,
the wind tunnel is only used as a tank to contain the gas into which the
model is fired as in a conventional ballistics range. Since the relative
velocity between any given projectile and the gas is thus limited by the
allowable muzzle velocity, the maximum Mach number that can be attained
depends primarily on the speed of sound in the gas in the test section.
By selecting argon as the gas, it is possible to obtain a value of 5/3
Tor 7 and a low enough speed of sound that Mach numbers as high as L.5
or 5 can be achieved by firing the projectile into stationary gas.

Although these conditions are not identical with those experienced by the



actual nagnetosphere past which ficws ionized hydrogen at Mach nunbers

to the two most important parameters of the present analysis, namely v
end M, that the results should be useful and instructive.

The model itself must be of finite length and axisymmetric to per-
mit firing in the gun. In accordance with these requirements and in
order to facilitate comparison with theoretical results, the model was
contoured to the shape described by the equatorial trace of the bound-

(28)

ary of the magnetosphere calculated by Spreiter and Hyett

(a7)

and Spreiter
and Summers using a modified version of the Chapmen-Ferraro theory

in which the boundary condition given here by equation (10) is replaced

by a related equation in which the left-hand side is equal to Pg+ Pg cos®
rather than simply Pg cos® ¥ where V¥ represents the angle between the
directions of the free-stream velocity vector and the normal to the mag-
netosphere boundary and pd = prv&z. Results were given for many differ-
ent values for the ratio ps/pd; that selected for the experiment is

ps/pd = 0.1. The forward, or sunward, portion of the resulting magneto-
sphere is very similar, although not identical, to that for Pg = O used

in Figs. 5 through 16. It follows from the basic rules of subsonic and
supersonic flow that the location of the bow wave and details of the flow
arcund the forward part of the magnetosphere are very nearly the same
whether ps/pd = 0 or O0.1. The value for this parameter has a p;ofound
influence on the shape of the rear of the magnetosphere, however, and

details of the flow may be expected to differ correspondingly in this

region.
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In the photograph of Fig. 17, the Mach number is 4.65; the equivalent
position of the earth is represented by the small white circular disc
superposed on the opague model magnetosphere, and the small pointed spike
on the downstream side of the magnetosphere is to help identify the ori-
entation of the model as it flies through the test section. This partic-
ular photograph was taken with a focussing shadowgraph system which has
the property of portraying the shock wave with good resolution, but at
the sacrifice of most other details of the flow. Most of the scattered
isolated details that are, in fact, visible in the photograph are without
geophysical meaning and are the result of damage to the viewing windows
caused by impacting models and their fragments in the course of years of
use of the facility.

The photograph shown in Fig. 17 is duplicated in Fig. 18 with a
superposed line indicating the calculated position for the bow shock wave

+1n @Y A
(V) e daNS

woat M = L.65 of a perfect gas of y = 5/3 past a

%0
body having the same shape as the magnetosphere model. The accuracy with
which the calculation procedures employed in this paper can predict the
location of the bow shock wave is illustrated by the essentially perfect
agreement with the results illustrated in the shadowgraph.

More details of the flow field can be made visible by photographing
the model with an ordinary shadowgraph system rather than the focussing
system used to obtain Figs. 17 and 18. A shadowgraph of the same model
taken with such a system at a station somewhat farther along in its

Tlight where it had decelerated to a Mach number of 4.50 is shown in

Fig. 19. though the thickness of the bow wave is exaggerated when
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viewed through the simple optical system of the ordinary shadowgraph
equipment, other details are made visible that are not revealed when
viewed through the focussing system. In particular, one may see the
characteristic or Mach waves between the forward part of the modei and
the bow wave in the region where the local velocities are supersonic.
Since the model is convex, these waves must be rarefaction waves. They
extend outward from the model into the stream until they intersect the
bow wave. Comparison with the calculated locations of Mach waves and
streamlines presented in Figs. 5 and 9 shows that the faint discontinuity
surfaces that extend downstream from the points of intersection of the
rarefaction waves and the bow wave are streamlines rather than reflected
compression or expansion waves. Any reflected waves that might be pres-
ent are too weak to be visible in the photographs. Prominently visible
in this photograph is the wake of the projectile extending far downstreanm
Trom the model. The general characteristics of the wake visible in this
shedowgraph are similar to those portrayed in many sketches that have been

T

dravm of the flow around the earth's magnetosphere. Recent results from
IMP-1 satellite(s) provide new insight into the nature of the magnetosphere
tall, however, by establishing the existence of a neutral surface separat-
ing antisolar directed fields in the southern half of the earth's magnetic
tail and solar directed fields in the northern half of the tail. The
electrical current that flows in the neutral surface serves to p?event

the magnetosphere tail from contracting in cross-section area with increas-

ing distance from the earth and to maintain the tail in a more or less

cylindrical configuration for great distances from the earth. For this



reason, certain details of the Tlow in the vicinity of the wake illustrated
in Fig. 19 probably have little relevance with respect to the flow of the
solar wind past the earth. They mey very well have considerable relevance,
nowever, to the Tlow past a large and slightly megnetized object such as,
vossibly, the moon or Venus.

Tnere remains the gquestion as to how accurately the simple Newtonian
pressure formula given by p = Py cos® v  provides the variation of pres-
sure along the magnetosphere boundary. This can be checked in the present
applications by simply compering the pressure so determined with that indi-
cated by the detailed gasdynamic calculations. The results of such a com-
parison are assembled in Fig. 20 for the cases included in Figs. 5 through
15. It can be seen that the simple Newtonian expression provides a gen-
erally good approximation over most of the magnetosphere boundary of intef-
est in the present studies. . The agreement is particularly good over the
vortion of the magnetosphere along which the flow is subsoniec. No sig-
nificant changes are to be expected, therefore, in the shape of the nose
portion of the bow wave due to the use of a more accurate and necessarily
more complicated calculation of the pressure. The Newtonian pressure
Tormula does, however, underestimate the pressure somewhat along the
Tlanks of the magnetosphere, indicating that a revised calculation using
the gasdynamic pressure distribution would lead to a slightly slimmer
nagnetosphere. Since the magnetic pressure against which the gas pres-
sure is balanced according to the discussion following equation (9) is

approximately proportional to the inverse sixth power of the distance

Trom the center of the earth, the resulting change in the magnetosphere
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shape would be expected tc be smali. A point of equal interest displayed
by these results is the lack of significant varilation of the pressure
distrioution with changes in M _ and 7 over the range of conditions
included in the calculations.

The pressure at the nose of the magnetosphere provided by the
detalled calculations agrees, as it rmust, with the following well known
expression for the stagnation pressure at the nose of a blunt obstacle

. . (38)
in a supersonic stream .

/rL
P4 <~/ + 1>7'l 1 (
- 31)
PocVes 8 yly - (r - 1)/21400211/“'1)

This expression is derived by considering the flow to experience a sudden

compression as it traverses a normal gasdynamic shock wave followed by

)

n additional gradual isentroplc compression as it decelerates to rest

ot

the nos
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the obstacle. It simplifies as follows for ¥ = 2 or 5/3.

r
L > £ =2
32\1 - 1/ ® o
oy 0
== ¢ (32)
pOC)V-OO
5 /3 1/2 1 a8/2
256 (3 (1 e/n
25 <5> <1 - 1/5Mof> for 7 = 5/3

Since the free-stream Mach number M& is much greater than unity in the
present applications, comparison with the Newtonian expression for the
pressure at the magnetosphere nose, nanely Pg = Kpoov;)o2 as indiéated in
equation (10), reveals that K approaches 0.8LL for y = 2 and 0.881 for

Y = 9/3. Since equation (27) shows that the distance D +to the nose of

the magnetosphere is proportional to the inverse sixth root of K, it
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Tollows immediztely that the size as well as the shepe of the magnetosphere
is very insensitive to variaticns of the Mach muber and ratio of specific

heats of the solar wind gas.
10. DISTORTION OF THE INTERPLANETARY FIELD

As noted previously, the results presented in the preceding section
represent solutions of equations (1), (2) and (4) with the terms contain~-
ing H omitted because of thelr smallness. Following this procedure,
the calculation of the flow field about the magnetosphere is decoupled
from the influence of the magnetic field, and the calculation of the defor-
mation of the megnetic field is deferred to a subseguent step that depends
on the solution for the Tlow Tleld. Once the latter is determined and an
orientation for the magnetic field in the incident stream is specified,
the calculation of the magnetic field surrounding the magnetosphere can
be achieved by integration of the previously unused relations of equa-
tion (1), namely curl (§ x v) = 0 end div E = 0. The latter are commonly
interpreted as indicating the magnetic field lines move with the fluid.
This convenient interpretation leads to a straightforward, although tedi-
ous, calculation in which the vector distance from each point on an arbi-
trarily selected field line to its corresponding point on an adjacent
field line in the downstreanm direction is determined by numerically inte-
grating fy dt over a fixed time interval ©®t. This procedure }eads in
general tc field lines that are curved in space.

Simplicity may be achieved at the expense of completeness by confin-
ing attention to the plane containing the velocity and magnetic field
vectors in the incident stream. Since the magnetosphere has been approx-

imated by an axisymmetric shape, it follows that the resulting field lines
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I¢r thiz case are also confined ertirely ©o the same plane. Results of
two such calculations are shown in Fig. 21. Both sets of results are for
a free-stream Mach number of 8 and a gas with 7y = 5/3, but no gualitative
changes are anticipated if somevhat different values are selected since
the velocity field is only slightly influenced by variations of Mach num-
ber and specific heat ratio. The magnetic field in the incident stream

is inclined at 900 to the direction of the veloclty vector in the left
pertion of Fig. 21, and &50 in the right portion. The corresponding
results for O° inclination are not presented, but can be visualized easily
because the Tield lines for that case are aligned everywhere with the
streamlines,

These results clearly show how the magnetic field lines bend discon-
tinuously as they pass through the bow wave at any angle except a right
angle, and then curve in a continucus manner throughout the entire region
between the bow wave and the megnetospnere. The discontinuocus vend at
the shock wave is, moreover, always in the direction that preserves the
sign of the tangential component of the field, as is required for all
physically relevant hydromagnetic shock waves., It may be seen that the
field lines illustrated in Fig. 21 are all draped around the nose of the
magnetosphere. This is characteristic of the results for all relative
orientations, except perfect alignment, of the magnetic field and wveloc-
ity wvectors for the special plane for which these results are prgsented.
Outside of this plane, however, the field lines drift around the nose with
the flow and deform into three-dimensional or spatial curves., The strong
censtraint imposed on the magnetic fileld by the stagnation point at the
magnetosphere nose is thus greatly reduced, and the field lines may be

anticipated to remasin much straighter than illustrated in Fig. 21.
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Fig, 1. Hormal speed or Friedrichz I alagrems for propagation velocity
of weak plane waves.

Tip., 2. View of coordinate systers.

Yio. 3. Speed of sound and Alfvén waves in the solar wind.

Fig. k. Stetches showing how asymptotic directions of shock waves,

)

covational discontinuities, and wake can be determined by use
of Friedrichs I or II diagrams. {a) Using Friedrichs I diagram
for plane waves, (b) Using I'riedrichs II diagram for waves from
a point disturbance.

Fig, 5. treamlines and wave patterns for supersonic Tlow past the mag-

netosphere; M =8, v = 2,

Fig. 6. Density contours for supersonic flow past the magnetosphere;
M =8,7=2
Fig, 7, Velocity and temperature contours for supersonic flow past the

nagnetosphere; M_ =8, 7 = 2, ,

Fig. 8. Mass flux contours for supersonic flow past the magnetosphere;

Fig. 9. trearilines and wave pavterns for supersonic flow past the mag-
netosphere; M =8, 7 = 5/3.

Fig, 10. Density contours for supersonic flow past the magnetosphere;
M, =8, 7 =5/3.

Fig., 11. Velocity and temperature contours for supersonic flow past the

nagnetosphere; M_ = 8, 7 = 5/3.
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Fig.
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15.

18.

19.

20.

21.

lMass flux contours for sujperconic Ilow past the magnetosphere;
M, =8, 7 = 5/3.

Position of bow sinock wave
density, wvelccity, and mass flux along the magneto-
sphere boundary and the dowastremn side of the bow shock wave
for various ¥  and 7.

Veriation of temperature along the magnetosphere boundary and
the downstream side of the bow shock wave for various M and 7.
Variation of standoflf distance with density ratio across bow
shock wave on the stagnation streamline.

Focussed shadowgrapn of nmodel magnetosphere in free flight at
Mach number L,56 through argon (7 = 5/3).

Comparison of calculated and observed positions of bow wave of

a model magnetosphere in free flisht at Mach number 4%.65 through

Normal shadowgrapnh of model magnetosphere in free flight at Mach
nurber 4,50 through argon (7 = 5/3).

Comparison of pressure distribution along the magnetosphere bound-
ary calculated by gasdynamic theory for various M& and y with
that indicated by the simple Newtonian approximation p = Pg cos® ¢.
Magnetic field in plane of free-stream velocity and magnetic field

vectors for supersonic flow past the magnetosphere, M& =8, 7 = 5/3.
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